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A method for computing one-dimensional unsteady compressibie
flows, with and without chemical reactions is presented. This work has
focused on the accurate computation of the discontinuous waves that
arise in such flows., The main feature of the method is the use of an
adaptive Lagrangian grid. This allows the computation of discon-
tinugus waves and their interactions with the accuracy of front-tracking
algorithms. This is done without the use of additionat grid points
representing shocks, in contrast to conventional front-tracking
schemes. The Lagrangian character of the present scheme also allows
contact discontinuities to be captured easily. The algorithm avoids
interpolation across discontinuities in a natural and efficient way. The
method has been used on a variety of reacting and non-reacting flows
in order to test its ability to compute accurately and in a robust way
complicated wave interactions.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Several methods for computing unsteady inviscid com-
pressible flows have appeared in the literature in recent
years. The emphasis has been on the ability of these numeri-
cal schemes to compute accurately discontinuous waves
which develop and their interactions.

High-resolution shock-capturing methods for hyperbolic
conservation laws is one category of such methods which
have been used successfully in recent years. A basic feature
of these methods is that the conservative formulation is used
which allows for shocks and their interactions to be
captured automatically without special effort. This is
characteristic of all older shock-capturing methods,
such as the Lax—Wendroff scheme [8], the MacCormack
scheme [10], the original Godunov scheme [5]. In all such
methods, discontinuous waves of the solution are represen-
ted as steep fronts, i.e., smeared over a finite number of com-
putational cells. A second and more important feature of
recent high-resolution schemes is the special effort which is
made to achieve higher order spatial and temporal accuracy
50 as to represent discontinuous waves of the solution as
accurately as possible, ie., to reduce the smearing effect
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which is typical of all shock-capturing methods. Such
schemes are the TVD schemes [6, 7], the various MUSCL-
type schemes [15], the PPM scheme [3] (piecewise
parabolic method), etc. A comparative study of some of
these schemes for real gases is given in a review article by
Montagné et al. [11]. The basic high-resolution shock-
capturing methods have been developed for nonlinear scalar
hyperbolic conservation laws. It is for this case that there
exists a sound mathematical theory. For noniinear hyper-
bolic systems of equations in one space variable the theory
is not as clear and the numerical methods used for these
systems apply formally the same techniques as in the scalar
case, but with the additional use of exact or approximate
Riemann solvers. A classical Riemann problem is solved
locally at each computational cell boundary in order to
compute the various flux terms required. This is the essen-
tial ingredient of the original Godunov scheme and it is pre-
sent in most successful high-resolution schemes. The various
flux-vector splitting techniques [14, 16] have essentially
incorporated in them an approximate Riemann solver.
Finally, their extension to more than one space dimension
is usually done by treating each spatial dimension
separately.

Another category of numerical schemes that have been
used is that of the shock-fitting or front-tracking methods.
Although they have not been used as extensively as the
shock-capturing methods, they have been quite successful in
one-dimensional problems. A good review of these methods,
as well as of many shock capturing. methods, is given by
Moretti [127. These schemes are typically based on a non-
conservative formulation and an effort is made to detect and
identify the various discontinuous waves and compute their
interactions explicitly. This is usually accomplished by
introducing additional computational elements repre-
senting such waves and using the Rankine-Hugeniot jump
conditions. This technique leads to complex programming
logic. Identifying the waves and computing their interac-
tions accurately is crucial for obtaining a meaningful and
stable solution. For flows with complicated wave inter-
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actions such schemes may not be as robust as the shock-
capturing schemes, even in one space dimension.

The research presented in this paper is part of a greater
effort which aims to combine the characteristics of the
above two categories of numerical schemes and to develop
a method which will share the advantages and eliminate
most of the disadvantages of both. This has been accom-
plished in the case of one-dimensional flow by the scheme
presented in this paper. The increased accuracy which is
provided in the computation of complicated wave inter-
actions and its robustness have made this scheme especially
valuable for the computation of reacting gas flows, where
detonation waves are present,

The scheme is based on a conservative shock-capturing
Godunov-type scheme, very much like van Leer’'s MUSCL
scheme [15]. The new feature, introduced here, is an adap-
tive Lagrangian grid which increases the accuracy with
which discontinnous waves and their interactions are
computed. Without introducing additional computaticnal
elements, ie., refining the grid, or special computaticnal
elements to represent these waves, the shocks and contact
discontinuities are computed as true discontinuities,
without the smearing effect typical of shock-capturing
methods. This makes the scheme different from adaptive
mesh refinement schemes (¢.g., see Berger and Oliger [2]),
which smear discontinuities, although on a much finer local
grid. The basic conservative shock-capturing capabilities of
the scheme are not diminished. The scheme is endowed with
the capability to track various fronts and, thus, the shock-
capturing and the front-tracking ideas are combined
properly. It is important to note that the adaptive grid
strategy, to a certain degree, is independent of the particular
solver. Any Godunov-type scheme may be used. The
Riemann solver is the link that provides the information
about local wave interactions needed for the adaptive
procedure.

It was deemed interesting to try this scheme on one-
dimensional flows of reacting gases in light of the increased
accuracy and robustness with which detonation waves and
their interactions could be computed. The interest in such
flows is evident by the number of papers appearing in
the literature. For example, numerical calculations, with
increased accuracy, of the one-dimensional instability of
plane detonation waves may be of great interest in confirm-
ing existing theories which are based on linear stability
analysis (e.g., see Lee and Stewart [9]). The present scheme
is able to reduce the error caused by the numerical smearing
of the leading shock of the detonation wave. This error
may be very important in the development of detonation
instability.

The computer code developed is also able to compute
one-dimensional cylindrically and spherically symmetric
flows, as well as plane flows with area change. It is thus
possible to compute explosions and implosions and study

AND DIMOTAKIS

the effect of curvature on detonation wave speed and
stability. Most of the results presented are basically valida-
tion runs and calculations demonstrating the abilities of the
method and the potential use for specific one-dimensional
probiems of interest. All results shown are for a perfect gas.
The difficulty of incorporating a general equation of state is
the same as in most schemes and independent of the main
feature of the present scheme, i.e., the adaptive Lagrangian
grid strategy.

2. NUMERICAL METHOD

2.1. Mathematical Formulation

The inviscid flow of a reacting mixture of calorically
perfect gases is considered. The assumption of a simplified
reacting mixture is made, according to which there are two
species present at any time, the reactant and the product.
The reactant is converted to the product by a one-step irre-
versible exothermic chemical reaction. This assumption is
made in order to compare with the many theoretical and
numerical results which are available in the literature for
this case. The chemical reaction rate is given by the standard
Arrhenius law

2= —KzT*exp(—E/R,T), (la)
where z is the mass fraction of unburnt gas, K is a positive
consiant, which essentially gives a time scale, £ is the activa-
tion energy of the chemical reaction, R, is the gas constant,
T is the absolute temperature, and « is also a constant. The
simplified Arrhenius model, where the reaction rate is a step
function depending on the temperature, has also been used.
For the simplified model the rate is given by

i= —KzH(T—T,), (1b)

where

I,
0:

x>0,
x<0,

) = @)

and T, is a given critical temperature.

The problem under consideration is a special case of the
general problem of solving numerically the nonlinear
hyperbolic system of the form

5_U+6F(U)
ot Ox

G(U), (3)

where U is the appropriate solution vector. As usual, x
denotes the Eulerian space variable. If the Lagrangian
formulation is used, a system of exactly the same form is -
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obtained. The space variable x, then, is replaced by a
Lagrangian space variable and the flux vector F(LU') is
changed appropriately. For non-reacting flow, G{U)=0.
Most numerical methods use Eq. (3} as their starting point
and, using a finite volume discretization, obtain the scheme
of the following general form

At . - -
U;-'+l:U;_‘IX(FJ+1,’2_FE-U2}+AIGf’ (4)

giving the solution, in an average sense, in the jth cell at the
time level # + 1. The numerical flux terms ¥ are computed at
the boundaries of each cell. An important feature of every
numerical method is the calculation of these flux terms in a
way that guaraniees stability and high-order accuracy.

A slightly different approach will be taken in deriving the
present scheme. Eventually, it will be of the general form
given in Eq. (4). It is useful to formulate the problem by
writing the conservation laws in integral form for an
arbitrary control volume F{s), whose bounding surface S(r)
moves with a velocity u, (Reynolds’ transport theorem).
These equations will be applied to each computational
volume of the discrete numerical scheme. This is done so
that the conservation equations and their discrete counter-
parts are written in a way which is independent of the
Eulerian or Lagrangian formulation that will be adopted
eventually. Moreover, it is easier to see from these equations
how the idea for the adaptive nature of the grid is motivated.
The conservation equations in integral form are

d
= vV —u,)-d8=0, 3
= jympd + me(“ u,) (s)
ﬁj pudV+f pu(u—u,)-dS
dt v Sty

+f pdS=0, (6)

S(r}

d
dr JV{:] pe d +JS(:) pe(u—uy)

+j pu-dS=0, (7)
S(1)

d
z v —u,)-dS
= J.V(r)pzd +Lm pz{u —uy)

- j 2p dV =0. (8)
14 (3]

These are written for an arbitrary control volume V{r),
whose bounding surface S(¢) has a velocity w,. In the above
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equations, e, is the total specific energy, which includes the
chemical energy, i.e.,

el=e+%u2+qoz, (%)

where ¢ is the specific internal energy, g, is the heat release
of the chemical reaction, and u = |u| is the magnitude of the
fluid velocity. The perfect gas assumption is also made, ie.,

p=[(y—1)pe (10)

Since the boundaries of the computational cells will be
moving, it is useful to consider the flow map

x=X(&, 1), (11)

which gives the position of the fluid particle that was
initially (¢=0) at the position & Thus, £ is convenient
Lagrangian marker for the fluid particles in the flow. If the
Lagrangian approach is taken, the local boundary velocity
is equal to the local fluid velocity, i.e., u, =win Egs. (5}-{8).

2.2. Spatial and Temporal Discretization

Consider now the case of one-dimensional flow. A finite
volume formulation is used, 1.e., space is discretized by a set
of computational cells as shown in Fig. 1. The conservation
equations are now written for the jth cell of the computa-
tional grid

dm;,
?+(Pduh)j+1/z"(.0 Aduy); =0, (12)
d
E’ (mjuj) + (pu A“h)j+ 12— (pu dug);_ 1
+ P~ Pic1n=0, (13)
d
E (mye ) + (pe, Aup), 12— (pe, A“b);;l/z
+{(up)is 1~ ()12 =0, (14)
d
I {m;z)) + (pz dup) i1
—(pz duy); 1o —2;m,=0, (15)

¥

space

‘th
jheell variable

FIG. 1. Finite volume discretization in one space dimension. The
space variable can be the Eulerian x or the Lagrangian ¢. The boundaries
of the jth celt are denoted by the subscripts j + 4.
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where

Ay =t —uy,

X+
ij'( p dx,

Xj_

K2
M= pu dx,
Y12

(16)

A2
ijU-EJ- ple+ 3w +qoz) dx,

Xi- 172

Kia 12
mz;= pz dx.

-1

Average values of all quantities in the jth cell are denoted
by the subscript j and values of various quantities at the two
boundaries of the cell are denoted by the subscripts j+ 1.
Note that average values are mass-averaged values. By
defining

F, =p Au,,

m

F = pu du, + p,
(17)
F_ = pe, Auy, + pu,

F,=pz Au,,

the equations of motion can be written in the more familiar
form

dm;
T;'*' (Fm)j+ 1/2 (Fm)jt 2= 01
p (ma)+ (F) 12— (Fu)jo12=0,
4 (18)

P (mie ) +(F.)iv1n— (Feo)io1p=0,
d .
Z (mjzj) + (F:)j+ 12 (Fz)ja- 12 = M.

Note the extra degree of freedom provided in the flux terms
by the, as of yet unspecified, term 4u,. The motion of the
cell boundaries is determined by

dx;
jd—l;m=(ub)ji1/2 (19)
and the average density in each celi is given by
"
o= : (20)

Xy —Xi—12
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The equation of state (10) provides the means for com-
puting the average pressure in the jth cell,
p= 0= 1) p; (ey—doz,— L), (21

The exact integral conservation laws have been written
for each computational cell. Equations (18) will now be
integrated in time explicitly. The basis for the method is a
conservative Godunov-type scheme similar to the MUSCL
scheme introduced by van Leer [15]. The procedure
followed in solving these equations is similar to that used in
most methods, which are higher-order extensions of the
original Godunov scheme. At every time instant, average
values of the solution are known in each computational cell.
Linear variations of the primitive variables, ie., density p,
pressure p, and velocity u, are assumed in each cell. A
Riemann problem is then set up locally at each cell interface.
The solution to this problem gives the velocity, pressure and
density needed to compute the flux terms (17). The different
feature in the present scheme is that the Lagrangian
formulation is used instead of the Eulerian and that an
adaptive grid is used.

So far, the fact that the Lagrangian formulation is being
used, has not appeared explicitly in the description of the
method. It is now that this choice i1s made and all quantities
are considered as functions of time ¢ and the Lagrangian
space coordinate . The interpolation procedure is carried
out in {-space and, assuming linear variation, the generic
quantity g varies as

q(&y=q;+ (g.); (€ — ;) (22)
in the jth cell, where g, 1s the mass-averaged value in the cell,
¢, is the center of the cell (in Lagrangian space), and (g;), is
the slope of g in this cell, which is assumed to be constant,
Note that discontinuities of these quantities are allowed at
the cell interfaces, as shown in Fig. 2.

The slopes are chosen using the van Leer slope limiter
[17], but the adaptive nature of the grid, which will be

Yy

j-32 -z Huz

space
el variable
jhee

FIG. 2. Linear variation of the generic quantity ¢ in the jth cell.
In general, g is discontinuous at the cell interfaces.
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described next, makes the choice of limiter less important
than in the typical higher-order Godunov-type schemes. In
fact, the adaptive grid allows more freedom in choosing the
interpolation scheme, because additional information on
the location of the various waves is always availabie at
each time instant. The slope {(g.), is computed, following
van Leer [17], by

(g:),=avelq:,ql), {23)
where
N T T v _Yiv1— 4
9 =55 > = (24)
I R
x4y (xv—y)z]
X, yy= 1— , 25

and ¢? is a small constant (¢? < 1),

At each cell interface, two constant states g~ and g™ are
required to be used as the initial condition for the Riemann
problem. There are many ways of doing this. One way is to
specify for the j+ 1 interface

Gir1n=4q,+ (%)j (§j+ 2= &j)a

(26)
‘Ltr =G )1 (G 12— b

Le., the values of g on cither side of the interface, as given by
Eq. (22). Using these states does not ensure second-order
accuracy in time. The method used in the present scheme is
shown in Fig. 3. The domain of dependence of {=¢,,
over the time interval A+ is estimated by the characteristics
at the time level 7. In the Lagrangian formulation of the
problem the characteristic speeds are given by

c,=+—a, (27)

* Po

t

At

Cy C.
= ] >
AE- AL §
e

FIG. 3. The constant states 4%, which are to be used as the initial
condition for the Riemann problem at the interface j + §, are obtained by
averaging the linear interpolant over the domains of dependence A&,
These domains correspond to the lutl timestep Ay,

5817104726
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where p, is the initial density (r=0) and a is the speed of
sound. The constant states ¢© are then determined as the
averages of Eq. (22) over the domains A¢*; Fig. 3. These
domains correspond to the full timestep Ar. This is equiv-
alent to tracing the characteristics back from the time
t+ At/2 and using the linear profile (22). This ensures
second-order accuracy in time.

The discrete scheme, giving the solution at the time level
n+ 1 from the solution at the previous time level #, can now
be written as

(m)"* T= (m;)" — A{[(Fm]j+ 42— (Fm)j— ks

(mj“J)HH = (mi“j)n_dt[(ﬁu)ﬁ 12— (Fu)'— 12

(mjeu)nH = (mjelj n_A{[(Fe)j+ 12— (Fe)jﬁlﬂ], (28)

(mjzj)nJr = (mjzj)" - AI[(ﬁl)j+ 172 (F:)jf 1/2]
+ dr(m,2,)",

+1
Xl =X eyt A ug) 11725

where the numerical fluxes £, F,, F,, and F. are given by
Eqs. (17), using the solution of the Riemann problem. The
average boundary velocity u, for each interface is stil
unspecified, but for the majority of interfaces 1, =  and the
last of Egs. (28) is second-order accurate in time. The
source term in the species equation is shown in Eqgs. (28} as
being evaluated at the time level #. It is better to integrate
the source term in a “split” manner, i.c., integrate the first
four equations in (28) without the source term and use this
intermediate state to estimate the term /m;,Z;. This splitting
has been implemented in the present scheme.

The stability requirement on the timestep is that of a
MUSCL scheme in the Lagrangian formulation. No addi-
tional stability problems arise due to the adaptive grid
strategy presented in the next section.

2.3. Adaptive Grid

The motivation for the adaptive grid comes from the
definition of the flux terms, as given by Eqgs. (17). The term
Auy, or, equivalently, the velocity of the cell boundary uy,,
is unspecified. The idea is to specify it at each cell interface,
so that all important discontinuous waves coincide with cell
boundaries, at every discrete time level, The solution of the
Riemann problem at a given interface provides all the
information needed to identify all the important waves
emanating from this interface, as well as their strengths and
speeds. This information is enough to specify Au,. Since all
important waves coincide with ceil boundaries, it is guaran-
teed that, at subsequent time instants, the evolution of these
waves will be determined properly by the solution of the
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local Riemann problems. In the numerical experiments
carried out, shock waves computed by the local Riemann
solvers were considered important enough to track if the
shock Mach number was greater than 1.01 and contact dis-
continuities were considered important if the ratio of the
densities on either side was greater than 1.05. These
parameters are quite conservative. One may want to track
only the very strong shock waves in the flow.

The grid is, basically, Lagrangian, i.e., most cell bound-
aries move with the local fluid velocity and, hence du, =0.
It is easy to see that the same ideas on the adaptivity of the
grid can be used on a grid that is primarily Eulerian. The
same equations can be applied directly.

An example of this adaptive procedure is shown in Fig. 4.
A strong shock wave moving to the right is computed by the
Riemann solver at the interface / — § at time . The decision
is made to assign a velocity to the adjacent cell boundary
i+ 3, so that at time 1+ A7 the shock coincides with the
interface i+ 3. Another possibility would be to have the
interface i — 4 move with the shock. The decision is made
depending on which interface would be required to move a
shorter distance in Lagrangian space. The shock speeds are
assumed constant over the time interval A: It is obvious
that the local expansion waves can be tracked in the same
way. This was not implemented in the present scheme,
simply to reduce the complexity of the programming.

It is evident from this example that a relation between the
velocities in real space and the velocities in Lagrangian
space is needed to update the Lagrangian grid. Consider the
motion of a cell boundary given by the trajectory x = x,(¢).
This boundary is moving with a velocity u,, = %,(¢), which,
in general, is different from that of the fluid «. This motion
corresponds to a motion in &-space given by the trajectory
&= E,(1) with velocity v, = £,(1). The relation between the
two velocities is found with the use of the flow map

x=X(, 1), (29)
lime
shock /
AL y
1
i-112 i1+1/2
i ieen | ¢

FIG. 4. The appropriate velocity is assigned to the cell interface i + 1
in order to intercept the shock at the subsequent discrete time level.
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which is essentially Eq. (11) written here for one-dimen-
sional flow. The cell boundary motion is given by

xp(t) = X(&p(2), 1) (30)
and, hence,
2 N
w=(g) +60(5), (1a)
or
ub=u+vb(g—§). (3tb)

The derivative of the flow map is numerically approximated
and assumed constant in each cell, ie.,

(6_)() ~ X1 — X512
of i éj+l,u’2_§j—1/‘2
The velocities of the various waves, which are computed by
the Riemann problems, can be translated into velocities in

¢-space by using Eq. (31b). The Lagrangian position of
each interface is updated by

(32)

1
;;1/2 STV U PP

(33)

The solution to the Riemann problem at each interface
provides sufficient information for the adaptive strategy.
Using the exact Riemann solver at every interface is very
costly. To reduce the cost, various criteria were found to
identify the cell interfaces where a strong discontinuous
wave is suspected to be present, before solving the Riemann
problem. These interfaces are flagged as critical interfaces.
The ratio A€~ /A& has proven useful in detecting develop-
ing shocks in the flow. Where the flow is smooth, without
steep gradients, the above ratio is

A&
e L. (34)

The regions, where this ratio deviates from unity by more
than 10 %, are considered critical regions. The full nonlinear
Riemann solver is used only in these regions. Everywhere
else the simple acoustic approximation to the Riemann
problem solution is used. It was found in all the numerical
experiments performed that, in addition to the above
criterion, finding local extrema of the slopes in pressure,
density, and velocity was very useful in determining these
regions. Other criteria may also be used. It is important that
the criteria be conservative enough, so that no critical
regions are missed, but they are not crucial in detecting
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discontinuous waves. The detection of important discon-
tinuous waves is ultimately done by examining the solutions
to the local Riemann problems.

No more than two adjacent critical interfaces are allowed
at any given time. In the smooth compression regions, the
interfaces at the maxima of the pressure gradients are
considered critical. The pressure gradients are estimated
using simpie finite differences. If the Riemann solver at these
locations computes sufficiently strong discontinuous waves,
then they are tracked. The critical interfaces, which carry
these waves, are treated the same way at the next time level
along with other possible critical interfaces that may be
detected. When there are two adjacent critical interfaces, the
two Riemann problems are solved simultaneously, At this
point it is decided if collisions wilt occur within the timestep
dt. There are six waves resulting from the two Riemann
problems and there are four cell interfaces available to do
the tracking. The strongest waves are tracked and the others
are ignored. This procedure has proven to be very robust in
handling all possible wave interactions,

Collisions and reflections from walls can be treated in a
straightforward way using this adaptive grid. A typical colli-
sion case is shown in Fig. 5. At time ¢, two strong shock
waves at the interfaces /i —§ and i+, are moving at each
other with speeds that allow for a collision before time
t+ At. The Riemann problems at the interfaces i — 5 and
i+ are solved at time ¢, simultaneously. The solution
indicates that there will be a collision within the time inter-
val At. The time step is adjusted locally, ie., only for the
three cells i — 1, and i+ 1, so that at the intermediate time
instant the collision point coincides with the cell boundary
i+ 4i. The Riemann soiver at this interface, at the inter-
mediate time instant, will compute the two shock waves
emerging from the collision and the adjacent cell boundaries

T time

t+2At |i-3/2 \i—llz 1+1/2 [m/z

L+ At

g

i-3/2 i-1/2 +1/2 4372
FI1G. 5. The typical collision of two shocks is shown. The time step is
adjusted locally so that the collisicn peint coincides with the cell interface

i+ 1 at the intermediate time step.

367

will be able to track them in the same way at subsequent
times. The fluxes at the interfaces i — 2 and i+ 2 are held
constant for the whole timestep Ar. This leads to a robust
way of handling wave interactions, without loss of accuracy.

3. RIEMANN SOLVER

The Riemann solver is an important ingredient of the
numerical scheme. It provides the means for computing the
velocity and the pressure at the cell interfaces and, thus, the
various flux terms required. It also gives valuable informa-
tion about the local waves emanating from each cell inter-
{ace. As cxplained in the previous section, the Lagrangian
grid adapts in such a way that important discontinuous
waves and collision points coincide with cell boundaries at
each time instant. It is, therefore, necessary to be abie to
identify the waves emanating from these critical cell bound-
aries at subsequent times. This is what the Riemann solver
accomplishes. A variety of exact and approximate Riemann
solvers have appeared in the literature in recent years. In all
these solvers the focus is on computing the velocity and
pressure of the contact discontinuity, which appears after
the breakup of the initial discontinuity of the Riemann
problem. In the present scheme it is crucial to identify the
exact wave pattern as well. This information is used to
assign the appropriate velocities to adjacent cell boundaries
so that all important waves are tracked and to adjust the
time step locaily so that collisions are computed accurately.
Moreover, the fluxes at an interface need to be computed
along the ray &(1)=yw,; see Eq. (31b). Most interfaces are
Lagrangian and hence, v, =0.

3.1. Non-reacting Perfect Gas

Consider the case of the Riemann problem for inviscid
flow of a perfect gas without chemical reactions. The initial
condition at time =0 consists of two constant states
denoted by the subscripts r and . Note that it is possible to
have two different perfect gases on either side of the £=0
location, as indicated by the different specific heat ratios,
ie, 7, and ¥,; see Fig. 6. The space variable ¢ is the

PP U Y

ProPr VY,

FIG. 6. Initial condition for the Riemann problem. The variable £ is
the Lagrangian space coordinate.
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Lagrangian space coordinate. At time 1=0" the general
wave pattern shown in Fig. 7 will develop.

There is a wave moving to the right (positive £} denoted
by R, a wave moving to the left (negative £) denoted by L,
and a contact discontinuity C which remains at £ =0 for all
time, i.e., moves with the local fluid velocity. The waves R
and L are either shocks or expansion waves, depending on
the initial condition. Across the contact discontituity C the
pressure p, and velocity , are continuous, but the density
has a jump discontinuity at £ =0 for all tirne. The density is
gy for £ <0and p,; for £ > 0. It is known that the solution
to this initial value problem exists and is unique for
arbitrary initial conditions. Moreover, the solution is self-
similar and the shock waves propagate with a constant
velocity and strength. That is why they are represented by
straight lines in the (&, ) diagram.

There are four wave patterns possible for this problem.
The solution will be found for each of these wave patterns
for the special case of a perfect gas.

(1} L-shock, R-shock. Across the shock R the following
relationship holds:

- 2 1
r= “’=#~(M,——). (35)
a, y.+1 M,
M, is the shock Mach number defined by
U —
M= (36)
ar

where U is the shock velocity and a,= /v, p,/p, 1s the
speed of sound in the undisturbed region r. Similarly for the

shock L,

u;—

— —2 (M 1) (37)
a; I\ M)

g

FIG. 7. General wave pattern resulting from the breakup of the
original discontinuity of the Riemann problem. C is a contact discon-
tinuity. L and R can be either shocks or expansion waves.
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where M, is the shock Mach number for L. Equations (35)
and {37) can be solved for the shock Mach numbers to give

N 1 1 2

M,=’)’:_ y (V: ) 1, (38)
v+ lu,—u

M= MY

f 4 a;
" +1 2 _ 2
+\/(ﬂ’4—) (”’a—"f) +1, (39)
/

The pressure ratios across the two shocks are given by the
equations

pf 2?1’ >
L4 —— (M -1), 40
pr v,+1( a (40)
Pr 2y, 2
H=14+——(M;-1) {41)
2 7+ 1 !

From Eqs. (38)-(41) one obtains a single equation for the
unknown r,

P v+l fu—u, a, \°
_ B (;___,,)

a; a;

N z 2
x\/(ﬂ) (u—&r) +1=0. (42
4 a; a;

This equation is solved numerically using a Newton-
Raphson method. Once r is obtained, all other quantities of
interest follow from Egs. (35)-(41). The densities are deter-
mined by

i 7+ 1 M,z .
Pr_ Gt DM, i=rl

Pi_2+(]’f_1)M;2, (43)

It is important to be able to determine if this wave pattern
will develop for a given initial condition. For this solution to
be possible, certain compatibility conditions must hold.
These are easily found by noticing that in Egs. (35) and (37)
the shock Mach numbers M, and A, must be greater
than 1. Tt then follows that the following compatibility
condition '

u, Sup<u (44)
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must hold or, equivalently,

u,~— u,l-<..0,
(45)

u,—u,

O0<r<g
a

(ii) L-expansion wave, R-shock. In this case, Eqs. (35),
(36), (38), and (40), derived previously, still hold for the
shock wave R. In addition to these equations, the following
equation gives the pressure ratio across the isentropic
expansion wave,

b (1 L=t M)z"”"”‘ k
P 2 a,

yi—1 Up—u, P 1a, )2?11’(?:—1!

={! - — 46
( T2 dy 2 a,r - (46)

where r is defined in Eq. {35). Combining Eqs. (38), (40),

and (46), a single equation in r is obtained, as in the

previous case,

+1 1\?
F(r)£1+y,y’4 Py (?,+ ) ri+1

4
2yiftyi— 1)
r) =0,

(47)

which is solved numerically. The densities are determined
by Eq. (43) across the shock and by the isentropic relation

pf-’:(@)l”
oy D '
across the expansion wave.
The compatibility conditions are found by noting that
across the expansion wave L, 0< p,/p,< | and across the

shock R, p,/p,=1. Using Eqgs. (40) and (46) the following
relations are found, after some algebra,

P 1+?1*1“1—”r‘}’1_1ﬂ
2 a, 2

pr/p!é 1!

()
U,—u< a,,
yi—1
)
+ fis
’)),'—1 a,

(ili} L-shock, R-expansion wave. This case is exactly the
same as case (i) with the transformation & - —¢.

(48)

and
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(iv) L-expansion wave, R-expansion wave. In this case,

there are two expansion waves and the pressure ratios
across them are given by

&f= ( 1+ E M)Q}u'(w— 1)

P 2 a,
P v,—lup—u 27030 = 1) (50)
_f_(1+r_éu) .

Py 2 a,

From Eqgs. (50) the following single equation in r is
obtained,

-1 2yl — 1)
S(r)z(l +7"2 r)

— 1y, - u, y,— | a, iy —1)
& 1+71 Hy W 4 =0,
2 ay

2 a
(51)

which is solved numerically with the Newton—-Raphson
method. The compatibility conditions are once again found
by noting that across the expansion waves 0 < p,/p, <1 and
0< p,/p. <1, which, using Eqs. (50), give

a
0%u,-—u,<2( & & ) (52)
‘yril ?!_1
and
— <r=0,
=
(53)
U, —u, H,— U, ( 2 )a,
=r< +H— =
a, a, ?f’l a,

3.2. Acoustic Approximation

The solution to the Riemann problem becomes easier to
obtain when the initial conditions are such that the waves R
and L shown in Fig. 7 are so weak that linear acoustic
theory can be used. This happens when the distance, in
some sense, between the two constant states r and / is small.
The waves R and L can then be treated as acoustic waves
with the pressure ratios across them given by the simple
relations,

pj'=pr+\f }'rprpr(uf_ur)’ (543)
Pr=Pi— </ )’;P:Pz(’«{f—u.')- (54b)
Combining Egs. (54a) and (54b), one finds
Up=(pr— D, /Y00, 1,
+\/“/fP.'Pf”1)/(\/}’rPrPr+\/?1Pin)- (55)
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The densities behind these waves are given by

pr=pi(py+ 2P (it 1l

where

W= (= Diy+ 1), i=rl (57}

3.3. Reacting Mixwure of Calorically Perfect Gases

So far, the classical Riemann problem for non-reacting
inviscid flow has been considered. The solution to this
problem, as mentioned before, is a self-similar solution, ie.,
depending on x/7 only. For the case of a simple reacting
mixture the nonlinear system of equations, that needs to be
solved, is of the form

sUu  JF(U)
v =G
at o T (38)
where
p pu
ou pul+p
= , F(U)=
ple+3u’) v pule +5u’)+ pu 9)
pz pIu
and
0
0
G(U)= (60)
0
—pz

This is written using the Eulerian formulation, but one
obtains a system of exactly the same form, if the Lagrangian
formulation is used. The Riemann problem solution,

At

expansion
wave

shock

FIG. 8. This is a typical wave pattern resulting from the breakup of
the initial discontinuity of the Riemann problem for the case of a simple
reacting mixture. The solution is no longer self-similar.
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described so far, is for the non-reacting case, i.e., G(U)=0.
For the reacting case, jumps in the concentration of unburnt
gas z are allowed only across contact discontinuities, but
not across shocks. The solution to this problem is more
complicated and no longer self-similar. In Fig. 8, a typical
wave pattern is shown. The shock and expansion waves are
curved in the (¢, 1) plane; ie., they are accelerating. The
solution to this generalized Riemann problem has been
worked out by Matania Ben-Artzi [1]. It is shown that the
solution approaches the solution of the classical Riemann
problem for the non-reacting case in the limit £ —0 and
t— 0. The more complicated generalized Riemann solver
given by Ben-Artzi provides higher order accuracy over the
usual non-reacting solver. Numerical experiments were per-
formed using the present adaptive Lagrangian scheme with
both Riemann solvers. It was found that the simpler solver
gave results which were just as good. The acceleration of the
various waves was captured numerically quite accurately.

4. NUMERICAL RESULTS

A number of test cases were run using this numerical
scheme. The cases were chosen primarily to validate the
code and to demonstrate its potential for solving 1D
problems with complicated wave interactions. The scheme
is particularly useful for computing unsteady reacting flows
involving detonation waves and their interactions.

4.1. Sod’s Shock-Tube Problem

The first case is the classical shock-tube problem. It
is an important validation run for the code. The initial
conditions used are those proposed by Sod [13]. At time
¢t =0 a diaphragm at the location x = 0.5 separates the two
constant states
x <05

p,=10, u,;= 0.0,

1, =00,

0= 10’

(61)
p,=0.125,

p.=0.1, x>0.5,

for a perfect gas with y = 1.40. ¥ = 150 computational cells
are used in this calculation. In ail the results.presented,
the solutions are given as functions of the Eulerian
space variable x, even though the calculation is done in
Lagrangian space. The Lagrangian aspect of the scheme is
evident by the increased density of computational points in
compression regions. The comparison between the numeri-
cal solution and the exact solution shown in Fig. 9 is
excellent. Note that the expansion wave is computed with
the accuracy of typical shock-captutring schemes, since no
effort is made to track expansion waves. The shock wave
and the contact discontinuity are computed with no
smearing.
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FIG. 9. (a) Velocity profile at time =020 for Sod’s shock tube
problem with ¥ =150 computational cells, (b) Pressure profile at time
t=1020 for Sod’s shock tube problem with & =150 computational cells.
(c) Density profile at time =020 for Sod’s shock tube problem with
N = 150 computational cells. The sclid lines represent the exact solutions
and the boxes represent the numerical solutions.
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In order to demonstrate the ability of the scheme to com-
pute compiicated wave interactions accurately, the shock
tube problem is carried a step further. Reflecting walls are
assumed present at the locations x =0 and x = L. The com-
putation is continued to see how the muitiple reflections of
the shock from the wails and its collisions with the contact
discontinuity are calculated. In Fig. 10, the solution is
shown after the first reflection of the shock wave from the
wall at x=1, which occurs at #=0.285. In Fig. 11, the
reflected shock has collided with the contact discontinuity
and a new shock wave has been generated. The solution at
a later time is shown in Figs. 12. The computation was
carried out until time ¢ =7.88. That corresponds to many
reflections of the original shock. In a real experiment viscous
effects would have made the process die down much sooner.
In Fig. 13, the entropy of the system is shown as a function
of time. The entropy is defined by

= 7
s=In(p/p’). (62)
i.2
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FIG. 10. (a) Pressure profile at time r=0.40. (b} Density profile at
time r = 0.40. The shock has reflected from the wall at x=1.
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FIG. 11, (a) Pressure profile at time = 0.45. (b) Density profile at

time ¢ =045 The reflected shock has collided with the contact discon-
unuity. A secondary shock has been generated,

As t— o, the system approaches the state predicted by
thermodynamics, since the scheme is fuily conservative. Any
scheme which conserves total mass and energy will give the
correct final entropy. In this case it is s=0.1168 in the
appropriate dimensionless units, This is an important point
worth repeating here. The conservative character of the
scheme is not compromised by the use of the adaptive grid
technique.

4.2. Sirong Shock Wave Problem

The strong shock wave problem used by Woodward and
Colella [18] is computed with the present scheme. This
problem is a good test case because of the strong interacting

discontinuous waves. The initial condition is that of a gas
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FIG. 12. (a) Pressure profile at time ¢=0.61. (b) Density profile at

time ¢ = 0.61. An acoustic wave has been generated from the collision of the
secondary shock with the contact discontinuity.
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FIG. 13. Entropy s =In{p/p*) of the system as a function of time for
the shock tube problem with multiple reflections.
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FIG. 14. (a) Velocity profile and (b) density profile at time r=0.030
for the strong shock wave problem.

with specific heat ratio y = 1.4 at rest in the tube 0 < x < 1.
The initial density is p =1 and the pressure is

p=1000, x<0.1,
p=001, 0l<x<09, (63)
p=100, 09<x<l

The results are shown in Figs. 14 and 15 for the times
t=0030 and r=0.038, respectively, 800 computational
cells were used for this calculation.
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FIG. 15. (a) Velocity profile and (b) density prifile at time 7 = 0.038 for

the strong shock wave problem,

4.3. ZND Detonation Waves

Another test case is that of a steady detonation wave.
The well-known ZND theory {Zel'dovich-VonNeumann—
Doering} for a steady detonation is used to compare with
the numerical solution obtained using this scheme. As a first
check, the profile of a steady detonation wave, computed
using the ZND theory, is given as the initial condition to the
unsteady code. The solution after time f= 10 (10,000 time
steps) is then superimposed on the ZND solution and
compared. The comparison, shown in Fig. 16, is excellent.
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(a) Velocity profile at = 10. (b) Pressure profile at += 10. (¢) Density profile at r = 10. (d) Temperature profile at # =10. The solid lines

are the solutions given by the ZND theory. The boxes are the numerical solutions.

The standard Arrhenius law, given by Eq. (1a), is used for
the chemical reaction rate witha =0, i.e.,

i= —KzT*exp(—E/R,T).
The parameters used for this test run are
y=12, go/R,Ty=30, E/R,T,=40,
where the subscript zero denotes the undisturbed region
into which the detonation propagates. This steady detona-
tion wave corresponds to an overdrive factor of f = 1.6. The
overdrive factor is defined by

f=D2/D%j1

where D is the detonation wave speed and D is the detona-

tion speed corresponding to the Chapman-—Jouguet point.
For details on the ZND theory see the book by Fickett and
Davis [4].

The case of unsteady detonation waves will now be con-
sidered. For the following cases the simplified Arrheniug
chemical rate law is used {Eq. (1b)), i.e.,

i= —KzH(T—T.),

where T, is a critical temperature above which the chemical
reaction begins. Figure 17 shows the evolution of an
unsteady detonation propagating in an undisturbed region.
It is the well-known piston problem. The motion of the
piston, starting at x=0, genecrates a shock which raises
the temperature of the gas above the critical value T.
The chemical reaction begins and the detonation wave
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FIG. 17. (a) Pressure profiles for the pisten problem. (b) Temperature
profiles for the piston problem. The detonation waves generated accelerate
into the undisturbed region. In this case the critical temperature is 7, = 1.3;
times t=0.1, 0.2, 0.3, 04.

accelerates into the undisturbed region. The numerical
values used in this run are

'y: 14, q0:20, Tc= 13,

where all quantities are normaliized with the corresponding
values in the undisturbed region. The piston velocity is
taken to be u, = 1.

A more interesting case is shown in Fig. 18. The initial
condition is a smooth pressure distribution with zero initial
velocity, which leads to isentropic compression and,
eventually, shock formation. If in this compression the
temperature of the gas becomes larger than 7, then the
chemical reaction starts and a detonation wave is generated.
The formation of the shock from a smooth flow is captured
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FIG. 18. (a) Velocity profiles for a smooth compression. (b) Pressure
profiles for a smooth compression. (¢} Temperature profiles for a smooth
compression. When the compression rtaises the temperature above the
critical value T, = 1.2 the reaction begins and a detonation wave is formed;
times ¢ = 0075, 0.150, 0.225, 0.300.
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very well by this scheme. N =200 computational cells were
used. The numerical values used in this run are

y=14, g,=20,T.=12, K=1,

where all quantities are normalized appropriately. The
normalization is such that the initial temperature of the gas
at rest is Ty, =1 or, equivalently, p,= p, in dimensionless
units. The initial pressure distribution is given by

po(x)=0.10+ 3.0 exp{ —25x7).

5. CONCLUSIONS

An adaptive numerical scheme has been presented for
the computation of flows with complicated interactions of
discontinuous waves. Its accuracy and robustness, as
demonstrated by numerical experiments make it a valuabie
tool, especially for the study of unsteady reacting flows with
detonation waves. The conservative formulation gives the
method all the advantages of higher-order shock-capturing
schemes and its adaptive characteristic allows for good
accuracy near shocks with no smearing effect. The advan-
tages of the conservative shock-capturing schemes are com-
bined with the advantages of the front-tracking methods
very well to give a useful computational scheme.

The drawback is that the extension of this scheme to
multidimensional flows is not straightforward. The main
idea of the scheme is the conservative front-tracking of
shocks and contact discontinuities on a Lagrangian grid.
The Lagrangian aspect of the method is the most difficult

LAPPAS, LEONARD, AND DIMOTAKIS

to extend. The conservative front-tracking aspect can be
extended and work in this area is in progress.
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